Extensions 1→N→G→Q→1 with N=C3 and Q=C327D4

Direct product G=N×Q with N=C3 and Q=C327D4
dρLabelID
C3×C327D436C3xC3^2:7D4216,144

Semidirect products G=N:Q with N=C3 and Q=C327D4
extensionφ:Q→Aut NdρLabelID
C31(C327D4) = C337D4φ: C327D4/C3⋊Dic3C2 ⊆ Aut C336C3:1(C3^2:7D4)216,128
C32(C327D4) = C336D4φ: C327D4/C2×C3⋊S3C2 ⊆ Aut C372C3:2(C3^2:7D4)216,127
C33(C327D4) = C3315D4φ: C327D4/C62C2 ⊆ Aut C3108C3:3(C3^2:7D4)216,149

Non-split extensions G=N.Q with N=C3 and Q=C327D4
extensionφ:Q→Aut NdρLabelID
C3.(C327D4) = C6.D18φ: C327D4/C62C2 ⊆ Aut C3108C3.(C3^2:7D4)216,70
C3.2(C327D4) = He37D4central stem extension (φ=1)366C3.2(C3^2:7D4)216,72

׿
×
𝔽